Pages

NOS - Nitrous Oxide Systems

 
When real performance enthusiasts think of nitrous oxide injection, one company springs to mind: NOS - Nitrous Oxide Systems! NOS pioneered nitrous injection in the 1970s, and today NOS powers more racers than any other nitrous company. Only NOS has such a wide assortment of systems and applications—just pick the power increase level you want, and NOS will get you there with a complete kit, including all the plumbing, hardware, and electronics you need. We’re also your source for NOS nitrous accessories like bottles, bottle brackets, blankets, injection nozzles, controllers and timers, and even illuminated purge valves for pure intimidation.

Why Not Pure Oxygen?

oxygen tankThe simple and most relevant answer is because we couldn’t get enough into the engine for it to be as effective as NOS / nitrous oxide. Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. Although nitrogen does not aid the actual combustion process it does absorb heat, as well as damping what would otherwise be a violent explosion, rather than a controlled burn. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That’s one of the reasons why adding more nitrous increases the heat of combustion very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would progressively decline to a much greater degree than with nitrous, as more and more oxygen was added. Consequently an engine wouldn’t be able to handle much pure oxygen before the increase in heat lowered the detonation level to unusable levels. Furthermore, oxygen can only be ‘readily’ stored in a compressed ‘gaseous’ form, without being stored in a special cryogenic thermos cylinder (a cylinder within a cylinder with a vacuum between the two walls) and as a gas it loses the cooling effect that nitrous offers by being available as a liquid. Adding the oxidiser as gaseous oxygen would displace more air than adding nitrous in liquid form, resulting in a lower total power capability. In other words; by using nitrous oxide we can squeeze in more oxygen atoms in a more beneficial form, containing substantial amounts of detonation suppressing nitrogen, than would be the case with gaseous oxygen.
- See more at: http://www.noswizard.com/nos-technical-information#sthash.JZTP5rzR.dpuf

Why Not Pure Oxygen?

oxygen tankThe simple and most relevant answer is because we couldn’t get enough into the engine for it to be as effective as NOS / nitrous oxide. Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. Although nitrogen does not aid the actual combustion process it does absorb heat, as well as damping what would otherwise be a violent explosion, rather than a controlled burn. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That’s one of the reasons why adding more nitrous increases the heat of combustion very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would progressively decline to a much greater degree than with nitrous, as more and more oxygen was added. Consequently an engine wouldn’t be able to handle much pure oxygen before the increase in heat lowered the detonation level to unusable levels. Furthermore, oxygen can only be ‘readily’ stored in a compressed ‘gaseous’ form, without being stored in a special cryogenic thermos cylinder (a cylinder within a cylinder with a vacuum between the two walls) and as a gas it loses the cooling effect that nitrous offers by being available as a liquid. Adding the oxidiser as gaseous oxygen would displace more air than adding nitrous in liquid form, resulting in a lower total power capability. In other words; by using nitrous oxide we can squeeze in more oxygen atoms in a more beneficial form, containing substantial amounts of detonation suppressing nitrogen, than would be the case with gaseous oxygen.
- See more at: http://www.noswizard.com/nos-technical-information#sthash.JZTP5rzR.dpuf

Why Not Pure Oxygen?

oxygen tankThe simple and most relevant answer is because we couldn’t get enough into the engine for it to be as effective as NOS / nitrous oxide. Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. Although nitrogen does not aid the actual combustion process it does absorb heat, as well as damping what would otherwise be a violent explosion, rather than a controlled burn. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That’s one of the reasons why adding more nitrous increases the heat of combustion very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would progressively decline to a much greater degree than with nitrous, as more and more oxygen was added. Consequently an engine wouldn’t be able to handle much pure oxygen before the increase in heat lowered the detonation level to unusable levels. Furthermore, oxygen can only be ‘readily’ stored in a compressed ‘gaseous’ form, without being stored in a special cryogenic thermos cylinder (a cylinder within a cylinder with a vacuum between the two walls) and as a gas it loses the cooling effect that nitrous offers by being available as a liquid. Adding the oxidiser as gaseous oxygen would displace more air than adding nitrous in liquid form, resulting in a lower total power capability. In other words; by using nitrous oxide we can squeeze in more oxygen atoms in a more beneficial form, containing substantial amounts of detonation suppressing nitrogen, than would be the case with gaseous oxygen.
- See more at: http://www.noswizard.com/nos-technical-information#sthash.JZTP5rzR.dpuf

Why Not Pure Oxygen?

oxygen tankThe simple and most relevant answer is because we couldn’t get enough into the engine for it to be as effective as NOS / nitrous oxide. Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. Although nitrogen does not aid the actual combustion process it does absorb heat, as well as damping what would otherwise be a violent explosion, rather than a controlled burn. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That’s one of the reasons why adding more nitrous increases the heat of combustion very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would progressively decline to a much greater degree than with nitrous, as more and more oxygen was added. Consequently an engine wouldn’t be able to handle much pure oxygen before the increase in heat lowered the detonation level to unusable levels. Furthermore, oxygen can only be ‘readily’ stored in a compressed ‘gaseous’ form, without being stored in a special cryogenic thermos cylinder (a cylinder within a cylinder with a vacuum between the two walls) and as a gas it loses the cooling effect that nitrous offers by being available as a liquid. Adding the oxidiser as gaseous oxygen would displace more air than adding nitrous in liquid form, resulting in a lower total power capability. In other words; by using nitrous oxide we can squeeze in more oxygen atoms in a more beneficial form, containing substantial amounts of detonation suppressing nitrogen, than would be the case with gaseous oxygen.
- See more at: http://www.noswizard.com/nos-technical-information#sthash.JZTP5rzR.dpuf

Why Not Pure Oxygen?

oxygen tankThe simple and most relevant answer is because we couldn’t get enough into the engine for it to be as effective as NOS / nitrous oxide. Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. Although nitrogen does not aid the actual combustion process it does absorb heat, as well as damping what would otherwise be a violent explosion, rather than a controlled burn. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That’s one of the reasons why adding more nitrous increases the heat of combustion very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would progressively decline to a much greater degree than with nitrous, as more and more oxygen was added. Consequently an engine wouldn’t be able to handle much pure oxygen before the increase in heat lowered the detonation level to unusable levels. Furthermore, oxygen can only be ‘readily’ stored in a compressed ‘gaseous’ form, without being stored in a special cryogenic thermos cylinder (a cylinder within a cylinder with a vacuum between the two walls) and as a gas it loses the cooling effect that nitrous offers by being available as a liquid. Adding the oxidiser as gaseous oxygen would displace more air than adding nitrous in liquid form, resulting in a lower total power capability. In other words; by using nitrous oxide we can squeeze in more oxygen atoms in a more beneficial form, containing substantial amounts of detonation suppressing nitrogen, than would be the case with gaseous oxygen.
- See more at: http://www.noswizard.com/nos-technical-information#sthash.JZTP5rzR.dpuf

Why Not Pure Oxygen?

oxygen tankThe simple and most relevant answer is because we couldn’t get enough into the engine for it to be as effective as NOS / nitrous oxide. Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. Although nitrogen does not aid the actual combustion process it does absorb heat, as well as damping what would otherwise be a violent explosion, rather than a controlled burn. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That’s one of the reasons why adding more nitrous increases the heat of combustion very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would progressively decline to a much greater degree than with nitrous, as more and more oxygen was added. Consequently an engine wouldn’t be able to handle much pure oxygen before the increase in heat lowered the detonation level to unusable levels. Furthermore, oxygen can only be ‘readily’ stored in a compressed ‘gaseous’ form, without being stored in a special cryogenic thermos cylinder (a cylinder within a cylinder with a vacuum between the two walls) and as a gas it loses the cooling effect that nitrous offers by being available as a liquid. Adding the oxidiser as gaseous oxygen would displace more air than adding nitrous in liquid form, resulting in a lower total power capability. In other words; by using nitrous oxide we can squeeze in more oxygen atoms in a more beneficial form, containing substantial amounts of detonation suppressing nitrogen, than would be the case with gaseous oxygen.
- See more at: http://www.noswizard.com/nos-technical-information#sthash.JZTP5rzR.dpuf

Why Not Pure Oxygen?

oxygen tankThe simple and most relevant answer is because we couldn’t get enough into the engine for it to be as effective as NOS / nitrous oxide. Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. Although nitrogen does not aid the actual combustion process it does absorb heat, as well as damping what would otherwise be a violent explosion, rather than a controlled burn. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That’s one of the reasons why adding more nitrous increases the heat of combustion very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would progressively decline to a much greater degree than with nitrous, as more and more oxygen was added. Consequently an engine wouldn’t be able to handle much pure oxygen before the increase in heat lowered the detonation level to unusable levels. Furthermore, oxygen can only be ‘readily’ stored in a compressed ‘gaseous’ form, without being stored in a special cryogenic thermos cylinder (a cylinder within a cylinder with a vacuum between the two walls) and as a gas it loses the cooling effect that nitrous offers by being available as a liquid. Adding the oxidiser as gaseous oxygen would displace more air than adding nitrous in liquid form, resulting in a lower total power capability. In other words; by using nitrous oxide we can squeeze in more oxygen atoms in a more beneficial form, containing substantial amounts of detonation suppressing nitrogen, than would be the case with gaseous oxygen.
- See more at: http://www.noswizard.com/nos-technical-information#sthash.JZTP5rzR.dpuf
 

Archives